Fuzzy Hidden Markov Models: A New Approach In Multiple Sequence Alignment

نویسندگان

  • Chrysa Collyda
  • Sotiris Diplaris
  • Pericles A. Mitkas
  • Nicos Maglaveras
  • Costas Pappas
چکیده

This paper proposes a novel method for aligning multiple genomic or proteomic sequences using a fuzzyfied Hidden Markov Model (HMM). HMMs are known to provide compelling performance among multiple sequence alignment (MSA) algorithms, yet their stochastic nature does not help them cope with the existing dependence among the sequence elements. Fuzzy HMMs are a novel type of HMMs based on fuzzy sets and fuzzy integrals which generalizes the classical stochastic HMM, by relaxing its independence assumptions. In this paper, the fuzzy HMM model for MSA is mathematically defined. New fuzzy algorithms are described for building and training fuzzy HMMs, as well as for their use in aligning multiple sequences. Fuzzy HMMs can also increase the model capability of aligning multiple sequences mainly in terms of computation time. Modeling the multiple sequence alignment procedure with fuzzy HMMs can yield a robust and time-effective solution that can be widely used in bioinformatics in various applications, such as protein classification, phylogenetic analysis and gene prediction, among others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

An Application of the ABS LX Algorithm to Multiple Sequence Alignment

We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...

متن کامل

COACH: profile-profile alignment of protein families using hidden Markov models

MOTIVATION Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed ...

متن کامل

Bayesian Restoration of a Hidden Markov Chain with Applications to DNA Sequencing

Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution...

متن کامل

Sequence Database Search Using Jumping Alignments

We describe a new algorithm for amino acid sequence classification and the detection of remote homologues. The rationale is to exploit both vertical and horizontal information of a multiple alignment in a well balanced manner. This is in contrast to established methods like profiles and hidden Markov models which focus on vertical information as they model the columns of the alignment independe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Studies in health technology and informatics

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2006